Search results for "Fibre lasers"

showing 3 items of 3 documents

Excited-state absorption in erbium-doped silica fiber with simultaneous excitation at 977 and 1531 nm

2009

We report a study of the excited-state absorption (ESA) in erbium-doped silica fiber (EDF) pumped at 977 nm, when the fiber is simultaneously excited by signal radiation at 1531 nm. We show, both experimentally and theoretically, that ESA efficiency at 977 nm gets strongly enhanced only in the presence of signal power. Experimentally, this conclusion is supported through the detection of upconversion emission, a “fingerprint” of the ESA process, and through the measurements of the EDF nonlinear transmission coefficient for the pump wavelength, which is sensitive to the ESA value. It is shown that the experimental data are precisely modeled with an advanced five-level Er3+ model developed fo…

Optical pumpingMaterials scienceSilica fiberbusiness.industryExcited statesUNESCO::FÍSICAGeneral Physics and Astronomychemistry.chemical_elementPhoton upconversionOptical pumpingErbiumOpticschemistry:FÍSICA [UNESCO]Fiber laserExcited stateDopingSilicon compoundsOptoelectronicsDoping ; Erbium ; Excited states ; Fibre lasers ; Optical pumping ; Silicon compoundsFiberAbsorption (electromagnetic radiation)businessErbiumFibre lasersJournal of Applied Physics
researchProduct

Ytterbium-doped fiber laser as pulsed source of narrowband amplified spontaneous emission

2019

AbstractWe report random noise pulsed regime of an ytterbium-doped fiber laser arranged in common Fabry-Perot configuration. We show that the laser output obeys the photon statistics inherent to narrowband amplified spontaneous emission and that the noise pulsing is properly addressed in terms of probability density and autocorrelation functions. Our novel approach reveals, in particular, that the regime’s coherence time dramatically shortens, from few ns to tens ps, with increasing laser power.

YtterbiumCoherence timeAmplified spontaneous emissionMaterials sciencelcsh:Medicinechemistry.chemical_elementPhysics::OpticsFiber Laser02 engineering and technologyOptical Physics01 natural sciencesNoise (electronics)Articlelaw.invention010309 optics020210 optoelectronics & photonicsNarrowbandOpticslaw:FÍSICA [UNESCO]Fiber laser0103 physical sciences0202 electrical engineering electronic engineering information engineeringLaser power scalingPhysics::Atomic Physicslcsh:ScienceFibre lasersMultidisciplinarybusiness.industrylcsh:RUNESCO::FÍSICALaserchemistrylcsh:Qbusiness
researchProduct

Performance analysis of dual-pump nonlinear amplifying loop mirror mode-locked all-fibre laser

2019

We numerically characterise, in the three-dimensional space of adjustable cavity parameters, the performance of a recently reported layout of a flexible figure-8 laser having two independently pumped segments of active fibre in its bidirectional ring (Smirnov et al 2017 Opt. Lett. 42 1732–5). We show that this optimisation problem can be efficiently addressed by applying a regression model based on a neural-network algorithm.

fibre optics amplifiers and oscillatorsPhysics and Astronomy (miscellaneous)02 engineering and technologySpace (mathematics)01 natural scienceslaw.invention010309 opticsmode-locked fibre lasersOpticslawFiber laser0103 physical sciencesInstrumentationPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Ring (mathematics)business.industrynonlinear opticsMode (statistics)Nonlinear optics021001 nanoscience & nanotechnologyLaserLoop (topology)Nonlinear system0210 nano-technologybusinessLaser Physics Letters
researchProduct